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RACT

The coupling between transmission line sections or
resonators is used in a number of components, such as
filters, couplers, etc. The general discontinuity problem of
coupled-finline sections is considered. Depending on the
arrangement, coupling may occur both at the ends or at the
sides of the finlines. A particular case is the inductive strip

discontinuity. The analysis is carried out expanding the fields
in terms of hybrid modes in the transverse direction,

according to the generalized transverse resonance method.
Computed results are in good agreement with available data.

1. INTRODUCTION

Finline discontinuities are still the objective of

several investigations since not many data are available to the

circuit designer. Accurate characterizations are of
fundamental importance to establish a reliable basis for the
design of Mine circuits.

An important class of discontinuity problems is that of

coupled-finline sections. Coupled finline structures are used
in a number of components, such as bandpass and bandstop

filters, couplers, etc. Both end-coupling and parallel-
coupling may be realized. Such configurations are special
cases of the general coupled-f inline discontinuity problem
depicted in Fig.1. Two finline sections shorted at one end are

coupled along the length ‘s’. For analysis purposes, as

discussed later on, the structure is enclosed by two

conducting planes. Depending on the choice of the geometrical
parameters, Fig. 1 can represent a number of different
configurations. The uniform coupled line structure, for

instance, is recovered by letting 11= 12= s.

The coupled length ‘s’ can be positive or negative.

Negative values correspond to the two finline ends being

shifted apart, so that coupling occurs essentially by the
finline terminal edges. In such a case the absolute value of s is

the finline separation. The inductive strip is a special case of

Fig. 1 when s is negative and the line offset is zero (h= O).

This configuration has been studied by Koster and Jansen [1]
and by Knorr and Deal [2] using the spectral domain method
(SDM).

Fig. la. Cross sectional geometry of the unilateral finline
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Fig. 1b. Longitudinal section of the coupled-finline discontinuity

The coupled-f inline discontinuity of Fig. 1 is analyzed

in this paper using the generalized transverse resonance

technique introduced in [3]. This method is briefly recalled
in the next section. Results have been computed for both

end-coupled and parallel-coupled finlines and are presented
in section 3. The case of uniform coupled lines is also
considered as a special case. Good agreement has been found
with the data available in [1] and [2] relative to the inductive

strip.
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The method is based on the computation of the resonant

conditions of a finline cavity containing the discontinuity. The
resonator is formed by placing electric (or magnetic) walls
some distance apart from the discontinuity. H is assumed that

only the dominant mode can propagate in each finline section

and that higher order modes excited al the discontinuity have
negligible amplitudes at the shorting planes. This condition

can be met by shifting the terminal planes half a wavelength

apart, or by using magnetic walls a quarter of wavelength

apart. Losses are assumed to be negligible.
The discontinuity can then be modeled as a (reactive)

two-port network. The equivalent circuit representation of
the resonant cavity is that of Fig. 2. In terms of the impedance
matrix of the discontinuity, the resonance condition is

(Zll +Z,)(Z22+Z2)- Z:2 = o (1)

where Zik (i, k = 1,2) are the normalized impedance
parameters of the discontinuity, and

Zi = j tan(~ili) i= 1,2 (2)

is the normalized impedance seen from the i-th port. pi is

the propagation constant of the i-th finline. Normalization is
made with respect to the characteristic impedances of the two
finlines.

At any given frequency, the three unknown parameters
of the discontinuity can be computed through (1) and (2)

provided three different pairs of resonant lengths 11, 12 are

known. These are obtained by a transverse resonance analysis

of the finline cavity, as described later on.

Tt T2

Fig. 2. Equivalent circuit of the finline cavity of Fig. 1b.

This method is equivalent to the tangent method [4] to
measure the equivalent circuit parameters of a discontinuity.
It is observed that no characteristic impedance definition is
needed since only normalized impedances enter the resonant
condition (1). With this method the computed impedances of
the equivalent two-port are automatically normalized with
respect to the characteristic impedances of the two finlines.

Simplification of the problem is obtained when the

structure is symmetrical (e.g., WI = W2, f, = f2, Fig. 1).

Let the terminal planes be placed symmetrically (11 = 12) so

that also Z1 = Z2. Two types of resonance occur depending on

whether the voltages at the ports are equal or opposite. The
even (e) and odd (o) resonance conditions are

Z8+Z11-Z12=0

ZO+Z11+Z12=0 (3)

where

z~. = j tan(pleo) (4)

and Ie and 10are the resonant Ienghts of the two finlines in the

case of even and odd resonance, respectively. From (3) one
obtains the impedance parameters of the discontinuity

z11 = -(ze+ zo)/2 ; Z12 = -(Z*- zo)/2 (5)

In terms of the series and shunt reactance X~= lm[Z1, -Zl z]

and Xc=lm[Z1 z] of the equivalent T-network (Fig.3):

x.= - tan(plo)

xc= - [tan(PIe)- WPIO)l (6)

Note that both in Fig. 2 and 3, the equivalent network
of the discontinuity is referred to the reference planes T, T2

located at the finline ends (see Fig. 1). Such a choice leads to
impedance parameters having a gentle variation with the

coupling length s. Another possible choice would be that of
interchanging the reference planes T1 with T2. This,

however, leads to impedance parameters with polar

singularities. This is because the latter choice incorporate
the distributed character of the coupled-line region into the
equivalent T-network. With the present choice of the
reference planes the two finlines of lengths 11and 12 , coupled

along the distance s, are represented by two lines of the same
Iegnths II and 12, connected through a two-port network.

LJxc

0 1 0
Tt T2

Fig. 3. Equivalent T-network or the symmetrical coupled-line
discontinuity

To determine the resonant lengths of the cavity, the EM

field is expanded in terms of TE-to-x and TM-to-x modes in
the dielectric and air regions (regions 1, 2 and 3 of Fig. 1b).
In fact, looking in the transverse x-direction the structure is

seen as a discontinuity problem in a rectangular waveguide of

inner dimensions 1=11+12-s and b. On the plane of the fins,

the electric field is zero everywhere except on the two slots,
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where it is expanded in terms of sets of orthogonal vector
functions

Ei = x
“(i) e(i)

i=l,2 (7)
nn

n

The e’s are chosen as the TE and TM eigenvectors of a

waveguide with same cross section as the slot pattern.

The boundary conditions on such a plane lead to a
homogeneous system of equations in the field expansion
coefficients in the various regions. By proper manipulation,
the unknowns are reduced to only the expansion coefficients
V (i) of the E-field (7) in the slot regions. This greatlyn

increase the numerical efficiency of the method with respect

to both computing time and memory storage. In fact, only a
few expansion terms are normally sufficient to represent the

field on the slots, while a much higher number, typically b/w

times higher, is required in the waveguide region to properly
account for the edge condition [8].

The condition for nontrivial solutions of the resulting

homogeneous system constitutes the characteristic equation of

the structure. This is a function of the frequency and line
lengths 11, 12. For any given frequency the characteristic

equation is solved for three pairs of resonant lengths to
compute through (1) the three unknown parameters of the
discontinuity. For symmetrical structures, two pairs of

(equal) lengths are computed which correspond to the even
(Ie) and odd (lo) resonances. (Note that even and odd have

different meanings when referred to the resonant lengths
It ,12or to the modes of the coupled finlines.)

AS a particular case when 11= 12= s, the method is used

to compute the propagation characteristics of uniform coupled
finlines. When no discontinuity is present the resonant
condition is simply that the cavity length is a multiple of half

a wavelength. The propagation constants at a given frequency
are therefore evaluated from the resonant Ienghts of the
cavity. Assuming the lowest order (m=l ) resonance, the

propagation constant is simply ~ = tis.

Once the characteristic equation has been solved, the
electromagnetic field distribution and all other related
quantified, such as the characteristic impedance, can be

computed.

3. ~FSUl TS

The method has been tested by comparison with the
results in [1] and [2]. The impedance parameters of the

equivalent T-network of a symmetrical inductive strip in
unilateral finline are shown in Fig. 4 versus the longitudinal
separation IsI. Both finlines are centered in the waveguide

(f, = b-f2, h=O). This figure has been taken from [1]. The

computations of Saad and Schuenemann [5] are also reported.
It is seen that as the finline separation exceeds = 4 mm, the

shunt reactance becomes negligible and the two finlines

become practically uncoupleo. The limit value of the series
reactance X~ corresponds to the equivalent reactance of the

end effect. Our computations are in good agreement with those

of Koster and Jansen, though some shift towards Saad and
Schuenemann’s results is observed. Similar aoreement with

the results of [2] has been verified.

ll\ : present theory

s—

Fig. 4. Normalized reactance of the equivalent

symmetrical inductive strip. WR28 waveguide; slot widths

1

T-network of a

w, =W2=0.5 mm. Slot separation s=o.5 mm. Substrate thickness

d=:O.254 mm, sr=2.22, f= 34 GHz.

— Koster and Jansen [1]; ––– Saad and Schuenemann [2]

A symmetrical parallel-coupled finline discontinuity

is considered next. We place the cavity walls symmetrically
with respectto the discontinuity (It =12, Fig. 1) so that even

and odd resonances can be considered. Fig. 5 shows the

computed even and odd resonant lengths Ie and 10 respectively

as functions of the separation/coupling length s. The
waveguide housing is a WR28, the transverse separation of

the finlines is h= 1 mm. Computations have been made at
three different frequencies, namely f= 30, 34, 38 GHz. For
large negative values of s the two finlines become decoupled.

The even and odd resonant lengths tend to the same limit
value. As the finline sections are approached, Ie and 10 shift

apart with an alternating behavior. For particular coupling
lengths, which depend on the frequency, Ie and 10become

coincident again.
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Fig. 5. Normalized resonant Ienghts of a symmetrical coupled

tinline discontinuity as a function of the separationlcoupling length
s. WR28 waveguide; slot widths WI =W2= 0.5 mm, slot distance

h= 1 mm, substrate thickness d= O.254 mm, Er=2.22, f=30, 34,

38 GHz. ( — even , ––– odd resonances).
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Fig. 6 Reactance of the equivalent T-network, corresponding to
the resonant lengths of Fig. 5.

(— x, , ––– xc).

The data of Fig. 5 can be used to evaluate the impedance

parameters of the discontinuity. The behavior of the
impedance parameters with the coupling length s is strictly

dependent on the choice of the reference planes. If the
reference plane for each line section is chosen to be

coincident with the line end, the reactance of the equivalent

T-network are those of Fig. 6 This choice of the reference

planes appears to be particularly convenient since the
equivalent reactance show a regular behavior with s. For
large negative values of s the shunt reactance Xc is zero,

whilst Xs tends to the limit value of the end effect for the

isolated finline. The end effect is more pronounced the higher

the frequency, owing to the stronger excitation of higher

order modes. The intersections of the Ie and 10curves of Fig.4

correspond to the zeros of Xr in such conditions the two ports

of the equivalent network are uncoupled.
Finally, Fig. 7a,b shows the frequency behavior of the

even and odd resonant lengths along with the corresponding
T-network reactance parameters. These data are relative to a

parallel-coupled finline with s = 3 mm,

A general approach to the characterization of both

uniform and discontinuous coupled-finline structures has

been presented. The analysis method is the generalized
transverse resonance technique of [3]. Computed results are
in good agreement with data available in the literature.
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Normalized resonant lengths and equivalent reactance as

functions of frequency. Same structure of Fig. 6 except with

s= 3 mm.
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