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ABSTRACT

The coupling between transmission line sections or
resonators is used in a number of components, such as
filters, couplers, etc. The general discontinuity problem of
coupled-finline sections is considered. Depending on the
arrangement, coupling may occur both at the ends or at the
sides of the finlines. A particular case is the inductive strip
discontinuity. The analysis is carried out expanding the fields
in terms of hybrid modes in the transverse direction,
according to the generalized transverse resonance method.
Computed results are in good agreement with available data.

1. INTRODUCTION

Finline discontinuities are still the objective of
several investigations since not many data are available to the
circuit designer. Accurate characterizations are of
fundamental importance to establish a reliable basis for the
design of finline circuits.

An important class of discontinuity problems is that ot
coupled-finline sections. Coupled finline structures are used
in a number of components, such as bandpass and bandstop
filters, couplers, etc. Both end-coupling and parallel-
coupling may be realized. Such configurations are special
cases of the general coupled-finline discontinuity problem
depicted in Fig.1. Two finline sections shorted at one end are
coupled along the length 's'. For analysis purposes, as
discussed later on, the structure is enclosed by two
conducting planes. Depending on the choice of the geometrical
parameters, Fig. 1 can represent a number of different
configurations. The uniform coupled line structure, for
instance, is recovered by letting ly=l=S.

The coupled length 's' can be positive or negative.
Negative values correspond to the two finline ends being
shifted apart, so that coupling occurs essentially by the
finline terminal edges. In such a case the absolute value of s is
the finline separation. The inductive strip is a special case of
Fig. 1 when s is negative and the line offset is zero (h=0}.
This configuration has been studied by Koster and Jansen [1]
and by Knorr and Deal [2] using the spectral domain method
(SDM).
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Fig. 1a. Cross sectional geometry of the unilateral finline
structure
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Fig. 1b. Longitudinal section of the coupled-finline discontinuity

The coupled-finline discontinuity of Fig. 1 is analyzed
in this paper using the generalized transverse resonance
technique introduced in [3]. This method is briefly recalled
in the next section. Results have been computed for both
end-coupled and parallel-coupled finlines and are presented
in section 3. The case of uniform coupled lines is also
considered as a special case. Good agreement has been found
with the data available in [1] and [2] relative to the inductive
strip.
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2. METHOD OF ANALYSIS

The method is based on the computation of the resonant
conditions of a finline cavity containing the discontinuity. The
resonator is formed by placing electric (or magnetic) walls
some distance apart from the discontinuity. It is assumed that
only the dominant mode can propagate in each finline section
and that higher order modes excited at the discontinuity have
negliglible amplitudes at the shorting planes. This condition
can be met by shifting the terminal planes half a wavelength
apart, or by using magnetic walls a quarter of wavelength
apart. Losses are assumed to be negligible.

The discontinuity can then be modeled as a (reactive)
two-port network. The equivalent circuit representation of
the resonant cavity is that of Fig. 2. In terms of the impedance
matrix of the discontinuity, the resonance condition is

2
(Z”+Zj)(222+22)-212 =0 (1)

where Zy (i, k 1,2) are the normalized impedance
parameters of the discontinuity, and

Z =j tan(pl) i=1,2 (2)

is the normalized impedance seen from the i-th port. B;is

the propagation constant of the i-th finline. Normalization is
made with respect to the characteristic impedances of the two
finlines.

At any given frequency, the three unknown parameters
of the discontinuity can be computed through (1) and (2)
provided three different pairs of resonant lengths Iy, Iy are

known. These are obtained by a transverse resonance analysis
of the finline cavity, as described later on.
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Fig. 2. Equivalent circuit of the finline cavity of Fig. 1b.

This method is equivalent to the tangent method [4] to
measure the equivalent circuit parameters of a discontinuity.
It is observed that no characteristic impedance definition is
needed since only normalized impedances enter the resonant
condition (1). With this method the computed impedances of
the equivalent two-port are automatically normalized with
respect to the characteristic impedances of the two finlines.

Simplification of the problem is obtained when the
structure is symmetrical (e.g., wy = wp, f; = fp, Fig. 1).
Let the terminal planes be placed symmetrically (14 = Ip) so

that also Zy = Z,. Two types of resonance occur depending on

whether the voltages at the ports are equal or opposite. The
even (e) and odd (o) resonance conditions are
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Z,+Z,, - Z12=0

Z,+Z,+2,=0 (3)
where

Ze’o =j tan(Blep) (4)

and |, and I, are the resonant lenghts of the two finlines in the

case of even and odd resonance, respectively. From (3) one
obtains the impedance parameters of the discontinuity
(5)

Zyy = ~(Zo+ 225 Zyy = -(Zy- Z,)12

In terms of the series and shunt reactances Xg= Im[Zy1-Z5]
and X.=Im[Z45] of the equivalent T-network (Fig.3):

Xs= - tan(Bl,)

Xo= - [tan(Bl,) - tan(Bl,)] (6)

Note that both in Fig. 2 and 3, the equivalent network
ot the discontinuity is referred to the reference planes T{T5

located at the finline ends (see Fig. 1). Such a choice leads to
impedance parameters having a gentle variation with the
coupling length s. Another possible choice would be that of
interchanging the reference planes Ty with T,. This,

however, leads to impedance parameters with polar
singularities. This is because the latter choice incorporate
the distributed character of the coupled-line region into the
equivalent T-network. With the present choice of the
reference planes the two finlines of lengths ly and I , coupled
along the distance s, are represented by two lines of the same
legnths Iy and 15, connected through a two-port network.

X Xs
z, 1
Xc
T‘
Fig. 3. Equivalent T-network of the symmetrical coupled-line
discontinuity
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To determine the resonant lengths of the cavity, the EM
field is expanded in terms of TE-to-x and TM-to-x modes in
the dielectric and air regions (regions 1, 2 and 3 of Fig. 1b).
In fact, looking in the transverse x-direction the structure is
seen as a discontinuity problem in a rectangular wavegquide of
inner dimensions I=ly+l5-S and b. On the plane of the fins,
the electric field is zero everywhere except on the two slots,



where it is expanded in terms of sets of orthogonal vector

functions
z V(i) e(i)
n n

n

E

i=1,2 (7)

The e's are chosen as the TE and TM eigenvectors of a
waveguide with same cross section as the slot pattern.

The boundary conditions on such a plane lead to a
homogeneous system of equations in the field expansion
coefficients in the various regions. By proper manipulation,
the unknowns are reduced to only the expansion coefficients
v, () of the E-field (7) in the slot regions. This greatly

increase the numerical efficiency of the method with respect
to both computing time and memory storage. In fact, only a
few expansion terms are normally sufficient to represent the
field on the slots, while a much higher number, typically b/w
times higher, is required in the waveguide region to properly
account for the edge condition [8].

The condition for nontrivial solutions of the resulting
homogeneous system constitutes the characteristic equation of
the structure. This is a function of the frequency and line
lengths 14, l,. For any given frequency the characteristic

equation is solved for three pairs of resonant lengths to
compute through (1) the three unknown parameters of the
discontinuity. For symmetrical structures, two pairs of
(equal) lengths are computed which correspond to the even
(I} and odd (I,) resonances. (Note that even and odd have

different meanings when referred to the resonant lengths
.}y or to the modes of the coupled finlines.)

As a particular case when ;= o= s, the method is used

to compute the propagation characteristics of uniform coupled
finlines. When no discontinuity is present the resonant
condition is simply that the cavity length is a multiple of half
a wavelength. The propagation constants at a given frequency
are therefore evaluated from the resonant lenghts of the
cavity. Assuming the lowest order (m=1) resonance, the
propagation constant is simply B = 's.

Once the characteristic equation has been solved, the
electromagnetic field distribution and all other related
quantitied, such as the characteristic impedance, can be
computed.

3. BESULTS

The method has been tested by comparison with the
results in [1] and [2]. The impedance parameters of the
equivalent T-network of a symmetrical inductive strip in
unilateral finline are shown in Fig. 4 versus the longitudinal
separation |s|. Both finlines are centered in the waveguide
{fy= b-f5, h=0). This figure has been taken from [1]. The

computations of Saad and Schuenemann [5] are also reported.
It is seen that as the finline separation exceeds ~ 4 mm, the
shunt reactance becomes negligible and the two finlines
become practically uncouplea. The limit value of the series
reactance Xg corresponds to the equivalent reactance of the

end effect. Our computations are in good agreement with those
of Koster and Jansen, though some shift towards Saad and
Schuenemann's results is observed. Similar agreement with
the results of [2] has been verified.
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Fig. 4. Normalized reactances of the equivalent T-network of a
symmetrical inductive strip. WR28 waveguide; slot widths
W{=Wy=0.5 mm. Slot separation s=0.5 mm. Substrate thickness

d=0.264 mm, g=2.22, f= 34 GHz.
—— Koster and Jansen [1]; — —— Saad and Schuenemann {2}

A symmetrical parallel-coupled finline discontinuity
is considered next. We place the cavity walls symmetrically
with respect to the discontinuity (}y=l,, Fig. 1) so that even

and odd resonances can be considered. Fig. 5 shows the
computed even and odd resonant lengths I, and I, respectively

as functions of the separation/coupling length s. The
waveguide housing is a WR28, the transverse separation of
the finlines is h=1 mm. Computations have been made at
three different frequencies, namely f= 30, 34, 38 GHz. For
large negative values of s the two finlines become decoupled.
The even and odd resonant lengths tend to the same limit
value. As the finline sections are approached, |, and |, shift

apart with an alternating behavior. For particular coupling
lengths, which depend on the frequency, |y and |, become

coincident again.
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Fig. 5. Normalized resonant lenghts of a symmetrical coupled

fintine discontinuity as a function of the separation/coupling length
s. WR28 waveguide; slot widths wy=wo= 0.5 mm, slot distance

h= 1 mm, substrate thickness d=0.254 mm, g=2.22, {=30, 34,
38 GHz. (—— even, ——— odd resonances).
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Fig. 6 Reactances of the equivalent T-network, corresponding to
the resonant lengths of Fig. 5.
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The data of Fig. 5 can be used to evaluate the impedance
parameters of the discontinuity. The behavior of the
impedance parameters with the coupling length s is strictly
dependent on the choice of the reference planes. If the
reference plane for each line section is chosen to be
coincident with the line end, the reactances of the equivalent
T-network are those of Fig. 6 This choice of the reference
planes appears to be particularly convenient since the
equivalent reactances show a regular behavior with s. For
large negative values of s the shunt reactance XC is zero,

whiist Xs tends to the limit value of the end effect for the

isolated finline. The end effect is more pronounced the higher
the frequency, owing to the stronger excitation of higher
order modes. The intersections of the le and I, curves of Fig.4

correspond to the zeros of X, In such conditions the two ports

of the equivalent network are uncoupled.

Finally, Fig. 7a,b shows the frequency behavior of the
even and odd resonant lengths along with the corresponding
T-network reactance parameters. These data are relative to a
parallel-coupled finline with s 3 mm.

4. CONCLUSIONS

A general approach to the characterization of both
uniform and discontinuous coupled-finline structures has
been presented. The analysis method is the generalized
transverse resonance technique of [3]. Computed results are
in good agreement with data available in the literature.
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Fig. 7 Normalized resonant lengths and equivalent reactances as
functions of frequency. Same structure of Fig. 6 except with
s= 3 mm.
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